Nuclear Power Plants as Complex Systems

- From initial concept to operation: 10+ years
 - Construction per se: 6 or 7 years
- Expected lifetime: 60+ years
- Strong safety and security regulatory requirements
 - But significant differences between national regulatory bodies, and even within the same regulatory body
- 250+ plant systems, involving a wide range of scientific and engineering disciplines
 - Electrical engineering, civil engineering, thermohydraulics, chemistry, nuclear physics, aerodynamics,
- Cross systems concerns
 - Operation and maintenance (including periodic testing), socio-organisational and human factors, risk & hazards analysis, vulnerability and security analysis, failure analysis, instrumentation and control (I&C), ...
The I&C Challenges

- 10,000+ signals
 - Several thousands I&C functions
- 10+ different I&C systems
 - Totaling several hundred cabinets
- Interact with nearly all plant systems
- Need to address all plant situations
 - Normal plant states: commissioning, starting up, intermediate power levels, normal power, shutting down, ...
 - Periodic testing and calibration, maintenance during operation, outages, ...
 - Abnormal states: equipment failure, incidents, accidents, severe accidents
- Subject to requirements and constraints from many other disciplines
- Changes more frequent than in other disciplines
 - Product and technological evolution
 - I&C as a solution for improved plant performance, resiliency, safety, ...
 - Digital I&C is the focus of regulatory suspicion
- I&C studies represent a significant part of the design cost of a new power plant
Examples of I&C Engineering Topics

- **Overall I&C architectural design**
 - Organisation of the 10+ I&C systems into a safe, secure, functional, resilient whole
 - Levels of defence-in-depth / security zones, safety classification / security degrees, diversity, data communications, human-system interfaces, ...
 - Minimising, as far as reasonably feasible, the need for country specific features

- **Individual I&C systems architectural design**
 - Several thousand functions, 100+ cabinets
 - Optimisation: minimise the number of necessary cabinets
 - Satisfy performance requirements, taking into account the processing required, inputs/outputs, and the characteristics of the platform chosen
 - Segmentation to reduce potential for complete system failure

- **Logical design verification**
 - Including system architecture, software, FPGA logic, executable binary code
 - Testing, formal verification, proven compilers and generation tools, ...

- **Design of Human-System interfaces**

- **Probabilistic safety modelling and analysis**

- **Verification of I&C functional and timing requirements**
Why is That Necessary?

- Experience from multiple industrial sectors shows that functional requirements are sometimes inadequate
 - Even for highly dependable systems
 - Errors will be revealed late in the development process, or worse, during operation
- Such weaknesses result from multiple causes
 - E.g., functional complexity or inadequate understanding or analysis of I&C system environment and operational context
- Evolutionary designs limit the risk
 - But radically new designs need to address the issue more explicitly
- One objective of the FP7 HARMONICS, ITEA2 MODRIO and CONNEXION projects is to enhance confidence in I&C functional and timing requirements

Small airport, No local control tower, Snowing, Poor visibility
Overall Approach

- Consider the functional and timing requirements for I&C in the framework of those of the parent plant system, and of the assumptions that system makes on its own environment
 - Including human actions, generally following specified operational procedures
- Formal requirements and behavioural modelling
- (Massive) use of co-simulation to verify that requirements are satisfied
 - Physical processes, Human actions (and operational procedures), Automatic control
- Also for
 - STPA (System Theoratical Process Analysis)
 - FMECA (Failure Modes, Effects and Consequences Analysis)
 - System validation (hardware-in-the-loop)
 - ...

EDF
Step 1 - Non-Formal Plant System Analysis

- Identification & characterisation of a plant system environment
 - All entities that interact with it (e.g., other plant systems, human operators)
- Identification & characterisation of operational modes
 - Situations with specific behaviour and expectations
 - Including failure and abnormal situations
 - Assumptions and requirements may depend on operational modes

- A plant system needs, and assumes, certain behaviour from other plant systems or from operators
- Once agreed, these assumptions become requirements for the other plant systems or for the operators
- A plant system is designed based on the requirements placed on it, but also on the assumptions it makes
Step 2 - Plant System Requirements Modelling

- Formal modelling of the plant system and its environment
 - Object(s) representing the plant system
 - Objects interacting with the plant system and representing its environment
 - Operational modes
 - Assumptions on the plant system environment
 - Requirements regarding the plant system

- At this stage, this is preferably not an imperative, deterministic model
 - To avoid over-specification and the precluding of possible solutions

- Formal modelling often helps improve the informal requirements specification

- Tool assisted verification may be used to detect overly constrained models (no possible solution), inconsistencies, incompleteness, ...

Detrministic behavioural model

Non-deterministic requirements model
Step 3 - Plant System Overall Design Modelling

- Identification and characterisation of the plant system main components
 - Including Instrumentation & Control
- Identification and characterisation of the plant system main internal modes
- Assumptions made on each component
 - Requirements, from the component standpoint
 - Allocation of plant system requirements
- First in a non-formal manner, and then in a formal model
 - Here again, preferably not an imperative, deterministic model
- Multiple design alternatives may be modelled and analysed
Step 4 - Plant System Overall Design Verification

- Co-simulation of the requirements model and the overall design model
- Stimulation using a random generator of conformant scenarios
 - Such as StimuLus (from ArgoSim)
 - Conformant to assumptions made regarding the plant system environment and plant system components
- Verification that the overall design satisfies the plant system requirements
 - The I&C functional and timing requirements specification are part of the plant system overall design
 - Application of coverage criteria
Step 5 - Detailed Design and Verification

- As design becomes more detailed, the precise behaviour of individual components can be represented by deterministic, behavioural models
 - E.g., in MODELICA for the physical process
 - In functional diagrams for I&C functions
- Detailed design decisions just need to comply with the overall design
Modelling

- Process models
 - Models based on ad hoc techniques
 - Models based on general, multi-physics modelling languages, e.g., MODELICA
 - Multiple models can cooperate using the FMI (Functional Mock-up Interface)

- MODELICA is being extended by the ITEA2 project MODRIO
 - FOrmal Requirements Modelling Language (FORM-L), to formally specify requirements and assumptions at process level
 - Stochastic modelling, to model random events such as components failures
 - Multi-mode modelling, to facilitate the representation of components failure modes
The language allows the expression of
- Requirements to be satisfied
 - Functional & timing requirements
 - Fault-tolerance and probabilistic requirements
- Assumptions made on the environment of the system
- Overall design decisions
 - Such as allocation of requirements to system components

Designed to be understandable by application domain experts
- Who are not necessarily modelling experts
- Graphic version of the language allowing different graphic styles and natural languages (dialects)
FORM-L Main Concepts

▸ FORM-L addresses four main questions: WHAT, WHEN, WHERE and HOW WELL

▸ WHAT
 ▪ Boolean conditions
 ▪ Duration of Boolean conditions
 ▪ Constraints on the number of occurrences of an event

▸ WHEN (temporal logic)
 ▪ During time periods (with duration)
 ▪ At particular instants (without duration)
 ▪ During "sliding time windows"

▸ WHERE
 ▪ Sets of objects concerned
 ▪ Set memberships often not known at requirements specification

▸ HOW WELL
 ▪ Fault tolerance
 ▪ (Conditional) failure probabilities
BPS, a Detailed Case Study - Requirements

The BPS (Backup electric Power Supply) provides electric power to Backed-up Components (BCs) in case of loss of Main Power Supply (MPS)

P3a: When in operation, and when the BPS is not under maintenance, BC1 should not be without power for more than 30 seconds per any 30 minutes time period

R3a: When there are no BPS components failures, or at most a single sensor failure, P3a is required

R4: The probability of not satisfying P3a must be less than 10^{-3} per demand
The **DGLS** (Diesel Generator Load Sequencer) is the control system of the **BPS**
- It operates in a discrete time domain
- The **BPS** overall design specifies requirements for the **DGLS**
DGLS-R9: When reloading is allowed, the required, unpowered Step with the highest priority shall be reloaded within 100 ms

- When there are remaining required, unpowered Steps
- An unrequired Step may become required at any moment

```plaintext
Boolean reloadingAllowed;
class Step
    Boolean required;
    Integer priority;
    Breaker brk;
end Step;
class Breaker
    event openOrder;
    event closeOrder;
    fsa state = {open, closing, closed, opening} ... end state;
...
end Breaker;
Step step[9]
    .... // initialization
end step;
Step stepsToBeReloaded = {s ∈ step | s.required and not s.brk.state=closed};
Integer maxPriority = max{stepsToBeReloaded.priority};
Step candidate = any{s ∈ stepsToBeReloaded | s.priority = maxPriority};
requirement R9 =
    when (reloadingAllowed and card(stepsToBeReloaded)>0) becomes true within ms100
    check candidate.brk.closeOrder;
```
BPS Formal Models

- **BPS.REQ**
 - Requirements & Environment (FORM-L)
 - stimulates
 - implements

- **BPS.ODS**
 - Overall Design (FORM-L)
 - stimulates
 - implements

- **BPS.ENV**
 - Environment (StimuLus)

- **BPS.BEV**
 - Detailed Design (Modelica + Functional Diagrams)
 - stimulates
Conclusion

- More explicit statement of WHY I&C requirements are as they are
 - Particularly useful when systems are revisited (for upgrades for example) many years after initial development
- Helps identify possible impacts of plant systems modifications on I&C
- The same models may be used for various purposes
 - Improve confidence in requirements
 - Early design functional verification
 - Probabilistic and failure analyses
 - FMECA
 - Hardware-in-the-Loop testing
 - ...

EDF